
Tetrahedron Letters 47 (2006) 1627–1629

Tetrahedron
Letters
A synthesis of isoxazoles through the reaction of
activated acetylenes and alkyl 2-nitroethanoates

in the presence of triphenylphosphine

Issa Yavari* and Loghman Moradi

Department of Chemistry, Tarbiat Modarres University, PO Box 14115-175, Tehran, Iran

Received 14 November 2005; revised 6 December 2005; accepted 21 December 2005
Available online 23 January 2006
Abstract—The reaction of dialkyl acetylenedicarboxylates or dibenzoylacetylene with alkyl 2-nitroethanoates in the presence of tri-
phenylphosphine leads to functionalized isoxazoles in good yields.
� 2006 Elsevier Ltd. All rights reserved.
Isoxazoles are an important class of heterocyclic com-
pounds and have served as versatile building blocks in
organic synthesis. They can be converted into several
important synthetic units such as b-hydroxy-ketones,1

c-amino-alcohols,2 a,b-unsaturated oximes,3 and b-
hydroxy-nitriles.4 In addition, isoxazoles have long been
targeted in synthetic investigations for their known bio-
logical activities and pharmacological properties, which
includes hypoglycemic,5 analgesic,6 anti-inflammatory,7

and anti-bacterial activities.8 A powerful method for
the construction of isoxazoles is the [3+2] dipolar cyclo-
addition between alkynes and nitrile oxides.9 Nitrile oxi-
des, which are formed by dehydration of nitroalkanes10a

or by oxidation of oximes with hypochlorite,10b are use-
ful 1,3-dipoles. As part of our study on the development
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of new routes to heterocyclic systems,11 we now report a
simple one-pot synthesis of functionalized isoxazoles 3.
Thus, reaction of activated acetylenes 1 with alkyl 2-nit-
roethanoates 2 in the presence of triphenylphosphine
(PPh3) leads to the corresponding functionalized isoxaz-
oles 3a–e in good yields12 (Scheme 1).

The reaction of activated acetylenes 1 with 2 in the
presence of PPh3 under reflux in toluene was complete
within a few hours. 1H and 13C NMR spectra of the
crude reaction mixtures clearly indicated the formation
of isoxazoles 3. Products other than 3 could not be
detected by NMR spectroscopy. The structures
of compounds 3a–e were deduced from their elemental
analyses and their IR, 1H NMR and 13C NMR
lkyl 2-nitroethanoates.
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spectroscopic data. For example, the 1H NMR spectrum
of 3a exhibited three singlets for the methoxy groups.
The 1H decoupled 13C NMR spectrum of 3a showed
nine distinct resonances in agreement with the proposed
structure.

A possible mechanism for this transformation is pro-
posed in Scheme 2. It is conceivable that the initial event
is the formation of 1,3-dipolar intermediate 4 from Ph3P
and the acetylenic compound, which is subsequently
protonated by the alkyl 2-nitroethanoate.13,14 Nucleo-
philic attack of the carbon atom of the conjugate base
of the CH-acid to the vinylphosphonium cation then
produces ylide 7, which is converted to 8 by a [1,3]-H+

shift. Next, intermediate 8 is converted to 3 via the N-
hydroxy compound 9 by elimination of Ph3P and H2O
(see Scheme 2).

Functionalized isoxazoles 3a–e may be considered as
potentially useful synthetic intermediates because they
possess atoms with different oxidation states. The pre-
sented method features the advantages that the reactions
can be performed under neutral conditions and the
starting materials and reagents can be mixed without
any modifications.
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